LANDOLT-BÖRNSTEIN

Numerical Data and Functional Relationships in Science and Technology

> *New Series* Editor in Chief: O. Madelung

Group III: Crystal and Solid State Physics

Volume 22 Semiconductors

Supplements and Extensions to Volume III/17

Editors: O. Madelung · M. Schulz

Subvolume b

Impurities and Defects in Group IVElements and III-VCompounds

C. A. J. Ammerlaan · W. Bergholz · B. Clerjaud · H. Ennen · H. G. Grimmeiss B. Hamilton · U. Kaufmann · W. v. Münch · R. Murray · R. C. Newman A. R. Peaker · G. Pensl · H.-J. Rath · R. Sauer · J. Schneider · M. Schulz M. S. Skolnick · N. A. Stolwijk · P. Vogl · A. F. W. Willoughby · W. Zulehner

Edited by M. Schulz

Springer-Verlag Berlin Heidelberg NewYork London Paris Tokyo HongKong

4.1.3 Paramagnetic centers

4.1.3.0 Introduction

Electron paramagnetic resonance (EPR) spectra are conveniently analyzed using a spin-Hamiltonian. In the concept of the spin-Hamiltonian, the energies of the levels comprising the ground state are expressed in terms of a polynomial in the effective electron spin operators S and, when magnetic nuclei are present, nuclear spin operators I. A small number of constants in the spin-Hamiltonian \mathcal{H} can accurately describe the observed transitions. A general form suitable to analyze and identify the spectra observed in diamond is: $\mathcal{H} = \sum \mathcal{H}_i$.

In the spin-Hamiltonian required to analyze the spectroscopic data, the following terms may appear:

Zeeman effect

$\mathscr{H}_{1} = \mu_{\mathbf{B}} \boldsymbol{B} \cdot \mathbf{g} \cdot \boldsymbol{S}$

 \mathscr{H}_1 describes the electronic Zeeman effect. All paramagnetic centers have this interaction. Due to the small value of the spin-orbit coupling constant in diamond and the strong crystal field in the solid which effectively quenches orbital contributions to the magnetic moment, the *g*-values for nearly all centers are close to the free-electron value g = 2.0023. Identification of spectra on the basis of the **g**-tensor only, the common situation for centers in silicon, is not possible in diamond. Other spin-Hamiltonian constants or characteristics of the spectrum have to be used additionally.

Zero-field splitting

$\mathscr{H}_2 = S \cdot \mathbf{D} \cdot S$

 \mathscr{H}_2 represents the zero-(magnetic)-field splitting. The interaction is only present for electron spin $S \ge 1$. The identification of centers produced by irradiation, notably the R-spectra, mainly rests on the symmetry and components of the **D**-tensor.

Higher-order Zeeman effect

$$\mathscr{H}_{3} = g_{2} \mu_{\rm B} (B_{\rm x} S_{\rm x}^{3} + B_{\rm y} S_{\rm y}^{3} + B_{\rm z} S_{\rm z}^{3})$$

 \mathscr{H}_3 represents the rather rare higher-order Zeeman effect which can be present in case $S \ge 3/2$, and has the given form for centers of cubic symmetry. The interaction in diamond has been reported for one center only, i.e. the acceptor-related spectrum NL1.

Normal-strain effect

$$\mathscr{H}_4 = b(\varepsilon_{xx}S_x^2 + \varepsilon_{yy}S_y^2 + \varepsilon_{zz}S_z^2)$$

 \mathscr{H}_4 expresses the effect of normal strains of the diamond crystal on the spectrum in terms of the deformation potential constant b and normal components of the strain tensor ε_{xx} , ε_{yy} and ε_{zz} . This term was only reported for the analysis of acceptor-related spectrum NL1.

Shear-strain effect

$\mathscr{H}_{5} = (d\sqrt{3}/3)[\varepsilon_{xy}(S_{x}S_{y} + S_{y}S_{x}) + \varepsilon_{yz}(S_{y}S_{z} + S_{z}S_{y}) + \varepsilon_{zx}(S_{z}S_{x} + S_{x}S_{z})]$

 \mathscr{H}_{s} expresses, similar to the previous term, the effect of distortion of the crystal on the energy levels. The deformation potential constant is *d*, the components of the shear strain are ε_{xy} , ε_{yz} and ε_{zx} . This term was only reported for spectrum NL1.

Nuclear Zeeman effect

$$\mathscr{H}_6 = -g_n \mu_N \boldsymbol{B} \cdot \boldsymbol{I}$$

 \mathscr{H}_6 gives the Zeeman interaction energy for a nucleus with spin *I*. The nuclear Zeeman splitting is not observable in first order in EPR. It can be measured by electron-nuclear double resonance (ENDOR) and then leads to unambiguous identification of an impurity through the nuclear magnetic moment (g_n) . Only a few studies by ENDOR have been performed for centers in diamond; examples include P1 [66C] and P2 [73L3, 84W].

Hyperfine interaction

$\mathscr{H}_7 = S \cdot \mathbf{A} \cdot \mathbf{I}$

 \mathscr{H}_7 describes the hyperfine interaction between the electron(s) in the paramagnetic defect and a nucleus with spin *I*. The term has to be summed over all the nuclei with non-zero spin for which an interaction is resolved. For spectra in diamond always the isotope ¹³C, with nuclear spin I=1/2, has to be considered. Due to the low abundance 1.1% of this isotope, the structural details in spectra related to this nuclear

Landolt-Börnstein New Series III/22b interaction have a relatively low intensity. Nitrogen, with I=1 of the 99.63% abundant isotope ¹⁴N, is the most common impurity in diamond. The hyperfine splitting into three sets of components reveals the presence of one or several nitrogen atoms. The identification of spectra given in Table 1 is based on this characteristic hyperfine structure. Actual observations have been made for carbon, nitrogen and a few other magnetic impurity isotopes. The hyperfine interaction can give characteristic structure to the EPR spectra, valuable for identification and further understanding of the atomic and electronic structure of the centers.

Nuclear quadrupole interaction

$\mathcal{H}_8 = I \cdot \mathbf{Q} \cdot I$

 \mathscr{H}_8 represents the nuclear quadrupole effect. Only effective when $I \ge 1$, for example for ¹⁴N, but not for ¹³C. Being a purely nuclear interaction it is difficult to observe in EPR [65L]. ENDOR allows a more accurate determination of the quadrupole tensor, for instance for spectrum P1 [66C].

Nuclear exchange energy

 $\mathcal{H}_{9} = JI_{i} \cdot I_{i}$

 \mathscr{H}_9 expresses the exchange interaction between nuclei and is effective when more than one impurity with nuclear spin is present in the center, such as in nitrogen aggregates. A measurement exists for the P2 center [73L3].

For further information on EPR see section 3.3. The convention adopted for silicon has been followed to label the spectra. Labels already in use in the literature were copied. Spectra which so far were not labeled, have been given designations. The new labels are: A9, A10, A11, E1, G1, KY1, L1, N5, N6, N7, O2, and TI1.

4.1.3.1 Nitrogen-related centers

Properties of EPR spectra related to nitrogen in diamond are compiled in Table 1.

Table 1. EPR spectra of nitrogen-related centers.

Spectrum N1 (Fig. 3)		
Symmetry:	monoclinic-I	
Spin:	S = 1/2	
g-tensor:	$(g_1 + g_2 + g_3)/3 = 2.0024$	
A-tensor:	nucleus ¹⁴ N, spin $I = 1$, abundance 99.63%, 1 site $A_{\parallel} = 130.0 \text{ MHz}, \parallel [1, 1, 1]$ $A_{\perp} = 89.7 \text{ MHz}, \perp [1, 1, 1], [69S]$ 90.2 MHz, $\perp [1, 1, 1], [85L2]$	
A-tensor:	nucleus ¹⁴ N, 1 site	
	$A_{\parallel} = 9.0 \text{ MHz}, \parallel [1, 1, 1], [69S]$	
	$A_{\perp} = 8.1 \text{ MHz}, \perp [1, 1, 1]$ $A_{\perp} = 8.3 \text{ MHz} \parallel [1, 1, 0] [851.2]$	
	$A_{\parallel} = 7.9 \text{ MHz}, \perp [1, 1, 0]$	
A-tensor:	nucleus ¹³ C, spin $I=1/2$, abundance 1.1%, 3 sites $A_{\parallel}=33.6$ MHz $A_{\perp}=25.8$ MHz	
A-tensor:	nucleus ¹³ C, 3 sites	
	$A_{\parallel} = 22.5 \text{ MHz}$	
	$A_{\perp} = 20.7 \text{ MHz}$	
A-tensor:	nucleus ¹³ C, 2 sites	
	$A_{\parallel} = 18.9 \text{ MHz}$	
Diamanda	$A_{\perp} = 15.0 \text{ MHz}$	
Diamond:	natural type Ia and Ib	
Model:	ionized nitrogen pair, negative (vacancy+nitrogen pair) complex, non-planar N_1CCN_2 -complex, see Fig. 3	
Reference:	69S, 72S, 78S, 82L1, 85L2	

178

Spectrum N3	3
Symmetry:	low
Spin:	S = 1/2
g -tensor:	$g_1 = 2.0024, \ [1, 1, 1]$ $g_2 = 2.0024^5, \perp [1, 1, 1]$ $g_3 = 2.0024^5, \perp [1, 1, 1]$
A-tensor:	$A_{\parallel} = 5.1$ MHz, axis 6° off [1, 1, 1] $A_{\perp} = 1.5$ MHz
Diamond:	natural type I
Model:	(nitrogen + divacancy) complex
Reference:	72S
Spectrum N4	4
Symmetry:	trigonal
Spin:	S = 1/2
a -tensor:	$(g_1 + g_2 + g_3)/3 = 2.0025$
A-tensor:	nucleus ¹⁴ N, spin $I = 1/2$, abundance 99.63%, 1 site
	$A_{\parallel} = 91.4 \text{ MHz}, \parallel [1, 1, 1]$
	$A_{\perp} = 66.7 \text{ MHz}, \perp [1, 1, 1]$
A-tensor:	nucleus ¹⁴ N, 1 site
	$A_{\parallel} = 89.7 \text{ MHz}, \parallel [1, 1, 1]$
	$A_{\perp} = 65.0 \text{ MHz}, \perp [1, 1, 1]$
Diamond:	natural, brown, plastically deformed
Remark:	anisotropic distribution of orientations
Model:	substitutional nitrogen pair near dislocation
Reference:	75S, 78W
Spectrum Ol	K1
Symmetry:	monoclinic-I
Spin:	S = 1/2
g-tensor:	$g_1 = 2.0031, \parallel [0, -0.7071, +0.7071]$
	$g_2 = 2.0019, \parallel [+0.7096, +0.4983, +0.4983]$
	$g_3 = 2.0025, \parallel [-0.7046, +0.5017, +0.5017]$
A-tensor:	nucleus ¹⁴ N, spin $I=1$, abundance 99.63%
	$A_1 = 15.48$ MHz, $\ \begin{bmatrix} 0 & -0.7071, \pm 0.7071 \end{bmatrix}$
	$A_2 = 21.00$ MHz, $\ [+0.9260, -0.0409, -0.0409]$ $A_3 = 15.19$ MHz, $\ [+0.9063, +0.2988, +0.2988]$
Q-tensor:	nucleus ¹⁴ N
	$Q_1 = +1.31$ MHz, [0 , -0.7071, +0.7071]
	$Q_2 = -2.67 \text{ MHz}, \parallel [+0.5892, -0.5713, -0.5713]$
	$Q_3 = +1.36$ MHz, $\parallel [+0.8080, +0.4166, +0.4166]$
A-tensor:	nucleus ¹³ C, spin $I = 1/2$, abundance 1.1%, 2 sites $A_{xx} = 23.7 \text{ MHz}, \parallel [1, 0, 0]$
A-tensor:	nucleus ¹³ C, 2 sites
	$A_{\parallel} = 13.5 \text{ MHz}$
	$A_{\perp} = 9.9 \text{ MHz}$
Diamond:	natural type Ib
Model:	(nitrogen + vacancy) complex, (nitrogen + vacancy + oxygen) complex
Reference:	70K, 72S, 77M, 78S, 88B
Spectrum P1	(Figs. 1, 4 and 12)
Symmetry:	trigonal (crystallographic pointgroup 3m)
Spin:	S = 1/2

Landolt-Börnstein New Series III/22b

g-tensor:	$g_{\parallel} = +2.0024, \parallel [1, 1, 1]$ $g_{\perp} = +2.0024, \perp [1, 1, 1]$
A-tensor:	nucleus ¹⁴ N, spin $I = 1$, abundance 99.63%, 1 site $A_{\parallel} = 114.034$ MHz, $\parallel [1, 1, 1]$ $A_{\perp} = 81.325$ MHz, $\perp [1, 1, 1]$
Q -tensor:	nucleus ¹⁴ N, 1 site $Q_{\parallel} = -2.649 \text{ MHz}, \parallel [1, 1, 1]$ $Q_{\perp} = +1.325 \text{ MHz}, \perp [1, 1, 1]$
A-tensor:	nucleus ¹⁵ N, spin $I = 1/2$, abundance >90%, 1 site $A_{\parallel} = 163 \text{ MHz}, \parallel [1, 1, 1]$ $A_{\perp} = 117 \text{ MHz}, \perp [1, 1, 1]$
A-tensor:	nucleus ¹³ C, spin $I = 1/2$, abundance 1.1%, 1 site $A_{\parallel} = 340.8$ MHz, $\parallel [1, 1, 1]$ $A_{\perp} = 141.8$ MHz, $\perp [1, 1, 1]$
A-tensor:	nucleus ¹³ C, 3 sites $A_{\parallel} = 41.03 \text{ MHz}, \parallel [1, 1, 1]$ $A_{\perp} = 32.06 \text{ MHz}, \perp [1, 1, 1]$
A-tensor:	nucleus ¹³ C, 3 sites $A_{\parallel} = 23.3 \text{ MHz}, \parallel [1, \overline{1}, \overline{1}]$ $A_{\perp} = 26.8 \text{ MHz}, \perp [1, \overline{1}, \overline{1}]$
A-tensor:	nucleus ¹³ C, 3 sites $A_{\parallel} = 14.5 \text{ MHz}, \parallel [1, \overline{1}, \overline{1}]$ $A_{\perp} = 11.2 \text{ MHz}, \perp [1, \overline{1}, \overline{1}]$
A-tensor:	nucleus ¹³ C, 6 sites $(A_1 + A_2 + A_3)/3 = 8.24$ MHz
A-tensor:	nucleus ¹³ C, 3 sites $(A_1 + A_2 + A_3)/3 = 4.15 \text{ MHz}$
A-tensor:	nucleus ¹³ C, 6 (or 9) sites $(A_1 + A_2 + A_3)/3 = 2.75$ MHz
Diamond:	synthetic and natural type Ib, type Ia [81B, 82F1]
Remarks:	anisotropy in g -tensor not measurable hyperfine tensor $\mathbf{A}(^{14}N)$ and quadrupole tensor $\mathbf{Q}(^{14}N)$ measured by ENDOR [66C] A_{xy} temperature dependent: $A_{xy} = 10.903$ MHz at 4.2 K, $A_{xy} = 10.880$ MHz at 300 K hyperfine tensor $\mathbf{A}(^{15}N)$ measured in synthetic enriched ¹⁵ N doped diamond [75K]
Model:	neutral substitutional nitrogen, $(1,1,1)$ distorted, see Fig. 4
Reference:	59S1, 65D, 65L, 66C, 71S4, 74S, 75K, 78L2, 80A, 81A2, 81B, 82F1
Spectrum P2	2 (Figs. 2 and 5)
Symmetry:	trigonal
Spin:	S = 1/2
g-tensor:	$g_{\parallel} = 2.0025, \parallel [1, 1, 1]$ $g_{\perp} = 2.0031, \perp [1, 1, 1]$
A-tensor:	nucleus ¹⁴ N, spin $I = 1$, abundance 99.63%, 3 sites $A_{\parallel} = 11.0 \text{ MHz}, \parallel [1, 1, 1], [73L3]$ $A_{\perp} = 10.1 \text{ MHz}, \perp [1, 1, 1]$ $A_{1} = 9.1 \text{ MHz}, \parallel [0 , -0.707, +0.707], [78S]$ $A_{2} = 10.4 \text{ MHz}, \parallel [+0.363, +0.659, +0.659]$ $A_{2} = 8.8 \text{ MHz}, \parallel [-0.932 + 0.256]$
Q-tensor:	nucleus ¹⁴ N, 3 sites $Q_{\parallel} = -0.66 \text{ MHz}, \parallel [1, 1, 1]$ $Q_{\perp} = +0.33 \text{ MHz}, \perp [1, 1, 1]$
J-value:	0.1 MHz

180

Ammerlaan

Landolt-Börnstein New Series III/22 b

A-tensor:	nucleus ¹³ C, spin $S = 1/2$, abundance 1.1%, 1 site $A_{\parallel} = 404$ MHz, $\parallel [1, 1, 1]$ $A_{\perp} = 174$ MHz, $\perp [1. 1. 1]$
A-value:	nucleus ¹³ C, 3 sites $A_{xx} = 27.6 \text{ MHz}, \parallel [1, 0, 0]$
A-value:	nucleus ¹³ C, 3 sites $A_{xx} = 19.2 \text{ MHz}, \parallel [1, 0, 0]$
Diamond:	natural type I
Remarks:	known as the "14 line" spectrum $\mathbf{A}(^{14}N)$, $\mathbf{Q}(^{14}N)$, and J measured by ENDOR [73L3, 84W] model confirmed by ODMR [80B]
Model: Reference:	three-nitrogen (+vacancy) complex, see Fig. 5 (old model nitrogen-aluminum pair) 59S2, 71S2, 73L3, 78S, 80B, 82W2, 84W
Spectrum W	7 (Fig. 6)
Symmetry:	monoclinic-I
Spin:	S = 1/2
g -tensor:	$(g_1 + g_2 + g_3)/3 = 2.0028$
A-tensor:	nucleus ¹⁴ N, spin $I = 1$, abundance 99.63%, 1 site measured at temperature $T = 77$ K $A_{\parallel} = 123.8$ MHz, $\parallel [1, 1, 1]$ $A_{\perp} = 87.5$ MHz, $\perp [1, 1, 1]$
A-tensor:	nucleus ¹⁴ N, 1 site, $T = 77$ K $A_{\parallel} = 15.6$ MHz, $\parallel [\overline{1}, 1, 1]$ $A_{\perp} = 13.2$ MHz, $\perp [\overline{1}, 1, 1]$
A-tensor:	nucleus ¹⁴ N, spin $I=1$, abundance 99.63%, 2 sites measured at temperature $T=450$ °C, motionally averaged spectrum, (overall defect symmetry trigonal) $A_1 = 57.7$ MHz, [1, 0, 0] $A_2 = 50.2$ MHz, [0, 1, 1] $A_3 = 64.2$ MHz, [0, 1, 1]
Diamond:	natural type I, plastically deformed
Remark:	anisotropic distribution of orientations
Model:	(N_1CN_2) or (N_1CCN_2) -complex, close to dislocation, see Fig. 6
Reference:	73L2, 75S
Spectrum W	/21 (Fig. 7)
Symmetry:	orthorhombic-I
Spin:	S = 1/2
g -tensor:	$g_1 = 2.0090, \parallel [1, 0, 0]$ $g_2 = 2.0026, \parallel [0, 1, 1]$ $g_3 = 2.0044, \parallel [1, \overline{1}, 1]$
A-tensor:	nucleus ¹⁴ N, spin $I = 1$, abundance 99.63%, 1 site $A_{\parallel} = 117 \text{ MHz}, \parallel [0, \overline{1}, 1]$ $A_{\perp} = 0 \text{ MHz}, \perp [0, \overline{1}, 1]$
A-tensor:	nucleus ¹⁴ N, 2 sites $A_{\parallel} = 20.4$ MHz, \parallel [+0.474, +0.623, -0.623] $A_{\perp} = 12.6$ MHz, \perp [+0.474, +0.623, -0.623]
Q -tensor:	nucleus ¹⁴ N, 2 sites $Q_{\parallel} = -3.3$ MHz, \parallel [+0.474, +0.623, -0.623] $Q_{\perp} = +1.65$ MHz, \perp [+0.474, +0.623, -0.623]
Diamond:	natural type Ia
Model:	three-nitrogen center, see Fig. 7
Reference:	78L4, 82L2

Landolt-Börnstein New Series III/22b

Spectrum W24 (Fig. 8) Symmetry: trigonal Spin: S = 1/2 $g_{\parallel} = 2.0025, \parallel [1, 1, 1]$ g-tensor: $g_{\perp} = 2.0025, \perp [1, 1, 1]$ nucleus ¹⁴N, spin I=1, abundance 99.63%, 2 sites A-tensor: $A_{\parallel} = 155 \text{ MHz}, \parallel [1, 1, 1]$ $A_{\perp} = 81 \text{ MHz}, \perp [1, 1, 1]$ Diamond: natural type Ia Model: di-nitrogen center, see Fig. 8 Reference: 81W, 83W Spectrum W25 (Fig. 9) Symmetry: monoclinic-I Spin: S = 1g-tensor: $(g_1 + g_2 + g_3)/3 = 2.0025$ $D_{\parallel} = +2732 \text{ MHz}, \parallel [0, 1, 1]$ **D**-tensor: $D_{\perp} = -1366 \text{ MHz}, \perp [0, 1, 1]$ (green) natural type Ia, after irradiation and anneal to 600 °C Diamond: (four-nitrogen + divacancy) center, see Fig. 9 Model: Reference: 81L Spectrum W26 (Fig. 10) Symmetry: orthorhombic-I Spin: S = 1g-tensor: $(g_1 + g_2 + g_3)/3 = 2.0025$ $D_{\parallel} = +2634$ MHz, $\parallel [0, 1, 1]$ D-tensor: $D_{\perp} = -1317 \text{ MHz}, \perp [0, 1, 1]$ (green) natural type Ia, after irradiation and anneal to 600 °C Diamond: Model: (di-nitrogen + vacancy) center, see Fig. 10 Reference: 81L Spectrum W27 Symmetry: monoclinic-I Spin: S = 1**g**-tensor: $(g_1 + g_2 + g_3)/3 = 2.0025$ $D_{\parallel} = +1794 \text{ MHz}, \parallel [+0.208, +0.692, +0.692]$ **D**-tensor: $D_{\perp} = -897 \text{ MHz}, \perp [+0.208, +0.692, +0.692]$ Diamond: (green) natural type Ia Model: associated with nitrogen cluster 80W Reference: Spectrum W28 Symmetry: monoclinic-I Spin: S = 1g-tensor: $(g_1 + g_2 + g_3)/3 = 2.0025$ $D_1 = +1037 \text{ MHz}, \parallel [+0.139, +0.700, +0.700]$ **D**-tensor: $D_2 = -659 \text{ MHz}, \perp [+0.139, +0.700, +0.700]$ $D_3 = -378$ MHz, $\perp [+0.139, +0.700, +0.700]$ Diamond: (green) natural type Ia associated with nitrogen cluster Model: Reference: 80W

Ammerlaan

182

Spectrum W30		
Symmetry:	trigonal	
Spin:	S = 1/2	
g-tensor:	$(g_1 + g_2 + g_3)/3 = 2.00$	
A-tensor:	nucleus ¹⁴ N, spin $I = 1$, abundance 99.63%, 2 sites $A_{\parallel} = 137$ MHz, $\parallel [1, 1, 1]$ $A_{\perp} = 63$ MHz, $\perp [1, 1, 1]$	
Diamond:	natural type Ia, after irradiation and anneal to 450 °C	
Remark:	symmetry tentative	
Model:	center with four or more nitrogen atoms	
Reference:	81L, 88L2	

4.1.3.2 Acceptor-related centers

Properties of EPR spectra related to acceptor centers in diamond are compiled in Table 2.

Table 2. EPR spectra of acceptor-related centers.

Spectrum A9

Symmetry:	axial	
Spin:	S = 1/2	
g-tensor:	$g_{\parallel} \simeq 0.5$, (at $T = 300$ K), $\parallel [1, 1, 2]$ $g_{\perp} \simeq 3$, (at $T = 300$ K)	
Diamond:	synthetic, boron doped, p-type semiconducting	
Remark:	g-values strongly temperature-dependent	
Model:	acceptor-bound hole	
Reference:	72B	
Spectrum A1	0	
Symmetry:	axial	
Spin:	S = 1/2	
g -tensor:	$g_{\parallel} \simeq 0.5$, (at $T = 300$ K), $\parallel [1, 1, 2]$ $g_{\perp} \simeq 2.5$, (at $T = 300$ K)	
Diamond:	synthetic, boron doped, p-type semiconducting	
Remark:	g-values strongly temperature-dependent	
Model:	free hole	
Reference:	72B	
Spectrum KY	¥1	
Symmetry:	cubic	
Spin:	S = 1/2	
g-tensor:	$(g_1 + g_2 + g_3)/3 = 2.003$	
Diamond:	natural type IIb, p-type semiconducting	
Model:	acceptor impurity	
Reference:	67B	
Spectrum NL1 (Fig. 11)		
Symmetry:	cubic	
Spin:	S = 3/2	

Landolt-Börnstein New Series III/22 b

Figs. p. 201

g-value: g_2 -value: ε -values: Diamond: Remark: Model: Reference:	g = (-)1.10 $g_2 = (+)0.01$ d/b = 1.55 natural type IIb, p-type semiconducting observed at low temperatures ($T \approx 2$ K) under external uniaxial stress hole bound to acceptor boron 81A1, 85A
Spectrum W	/32
Symmetry:	trigonal
Spin:	<i>S</i> = 1
g-tensor:	$(g_1 + g_2 + g_3)/3 = 2.002$
D-tensor:	$D_{\parallel} = +136.4 \text{ MHz}, \parallel [1, 1, 1]$ $D_{\perp} = -68.2 \text{ MHz}, \perp [1, 1, 1]$
Diamond:	natural type IIb, p-type semiconducting
Model:	native center
Reference:	83L1, 87L1, 87L2
Spectrum W	/36
Symmetry:	trigonal
Spin:	<i>S</i> =1
g-tensor:	$(g_1 + g_2 + g_3)/3 = 2.002$
D -tensor:	$D_{\parallel} = +103.4 \text{ MHz}, \parallel [1, 1, 1]$ $D_{\perp} = -51.7 \text{ MHz}, \perp [1, 1, 1]$
A-tensor:	nucleus ¹¹ B (tentative), spin $I=3/2$, $g_n = -1.79$ $A_{\parallel} = 8.7$ MHz, $\parallel [1, 1, 1]$ $A_{\perp} = 6.0$ MHz, $\perp [1, 1, 1]$
Q -tensor:	nucleus ¹¹ B (tentative) $Q_{\parallel} = -3.6 \text{ MHz}$ $Q_{\perp} = +1.8 \text{ MHz}$
Diamond:	natural type IIb, p-type semiconducting
Model:	native boron-related center
Reference:	87L1, 87L2
	4.1.3.3 Transition metal impurities
Properti	es of EPR spectra related to transition metal impurities in diamond are compiled in Table 3.
Table 3 ED	P spectra of transition metal impurities
	R spectra of transition metal impurities.
Spectrum E	
Symmetry:	axiai (tetragonal or trigonal)
Spin:	S = 1/2
g -tensor:	$g_{\parallel} = 4.11 / g_{\perp} = 4.43$
A-tensor:	nucleus ⁵⁹ Co, spin $I = 7/2$, abundance 100%, 1 site

-tensor: nucleus ⁵⁹Co, spin I = 7/2, abundance 100%, 1 site $A_{\parallel} = 245$ MHz $A_{\perp} = 260$ MHz

Diamond: synthetic Model: Co²⁺ impurity Reference: 75B

Ammerlaan

Landolt-Börnstein New Series III/22b

Spectrum G1		
g -tensor:	$(g_1 + g_2 + g_3)/3 \simeq 3$	
Diamond:	synthetic	
Model:	transition metal impurity, nickel or iron	
Reference:	62H, 67S1, 68P	
Spectrum W	/8 (Fig. 12)	
Symmetry:	cubic	
Spin:	S = 1/2	
g-value:	g = 2.031	
A-value:	nucleus ⁶¹ Ni, spin $I = 3/2$, abundance 86%, 1 site $A = 18.2$ MHz	
A-tensor:	nucleus ¹³ C, spin $I = 1/2$, abundance 1.1% $(A_1 + A_2 + A_3)/3 = 7.6 \text{ MHz}$	
Diamond:	synthetic (powder), natural type Ia,b powder [77L2]	
Remark:	hyperfine tensor $A(^{61}Ni)$ measured in synthetic enriched ^{61}Ni doped diamond [71S3]	
Model:	nickel impurity, oxygen-related center, damage below surface	
Reference:	66L, 68P, 70B, 71S3, 77L2	
Spectrum W10		
Symmetry:	trigonal	
Spin:	<i>S</i> =2	
g-tensor:	$(g_1 + g_2 + g_3)/3 = 2.001$	
D -tensor:	$D_{\parallel} = +102.8 \text{ MHz}, \parallel [1, 1, 1]$	

spin.	3 = 2
g-tensor:	$(g_1 + g_2 + g_3)/3 = 2.001$
D-tensor:	$D_{\parallel} = +102.8 \text{ MHz}, \parallel [1, 1, 1]$
	$D_{\perp} = -51.4 \text{ MHz}, \perp [1, 1, 1]$
Diamond:	natural brown type IIa
Remark :	earlier value spin $S = 1$ incorrect
Model:	interstitial neutral chromium (tentative)
Reference:	78L2, 87L1, 87L2

4.1.3.4 Irradiation defects

Properties of EPR spectra observed for irradiation-induced centers in diamond are compiled in Table 4.

Table 4. EPR spectra of irradiation-induced centers.

Spectrum A1 (Fig. 15)		
Symmetry:	monoclinic-I	
Spin:	<i>S</i> =1	
g -tensor:	$g_1 = 2.0021, \parallel [0, -0.7071, +0.7071]$ $g_2 = 2.0016, \parallel [+0.4540, +0.6300, +0.6300]$ $g_3 = 2.0026, \parallel [-0.8910, +0.3210, +0.3210]$	
D -tensor:	$D_1 = -74$ MHz, [0 , -0.7071, +0.7071] $D_2 = +154$ MHz, [+0.1426, +0.6999, +0.6999] $D_3 = -80$ MHz, [-0.9898, +0.1009, +0.1009]	
A-tensor:	nucleus ¹³ C, spin $I = 1/2$, abundance 1.1%, 2 sites $A_1 = 29.1$ MHz, [0 , +0.7071, +0.7071] $A_2 = 38.1$ MHz, [+0.7986, -0.4254, +0.4254] $A_3 = 29.1$ MHz, [-0.6018, -0.5647, +0.5647]	
A-tensor:	nucleus ¹³ C, 2 sites $A_1 = 20.4$ MHz, $\parallel [0 , +0.7071, +0.7071]$ $A_2 = 26.4$ MHz, $\parallel [+0.7071, -0.5000, +0.5000]$ $A_3 = 19.8$ MHz, $\parallel [-0.7071, -0.5000, +0.5000]$	

Landolt-Börnstein New Series III/22b

Figs. p. 201

٦

A-tensor:	nucleus ¹³ C, 2 sites $A_1 = 15.6 \text{ MHz}, \parallel [0 , +0.7071, +0.7071]$ $A_2 = 21.6 \text{ MHz}, \parallel [+0.6561, -0.5337, +0.5337]$ $A_3 = 14.4 \text{ MHz}, \parallel [-0.7547, -0.4639, +0.4639]$
A-tensor:	nucleus ¹³ C, 46 sites $(A_1 + A_2 + A_3)/3 = 11.4$ MHz
Diamond:	natural type IIa, after 12 MeV electron irradiation at low or at room temperature, anneals out at 500 °C
Model:	(impurity + interstitial carbon) complex
Reference:	71K, 85L1, 88L1
Spectrum A	2
Symmetry:	100 K : monoclinic-I, 300 K : orthorhombic-I
Spin:	S=1
g-tensor:	$g_1 = 2.0031, \parallel [1, 0, 0]$ $g_2 = 2.0015, \parallel [0, 1, 1]$ $g_3 = 2.0031, \parallel [0, \overline{1}, 1]$
D -tensor:	$100 \text{ K}: D_1 = -158 \text{ MHz}, \parallel [+0.9981, -0.0432, -0.0432], 300 \text{ K}: -170 \text{ MHz}, \parallel [1, 0, 0]$ $D_2 = +328 \text{ MHz}, \parallel [+0.0610, +0.7058, +0.7058], +352 \text{ MHz}, \parallel [0, 1, 1]$ $D_3 = -170 \text{ MHz}, \parallel [0, 0, -0.7071, +0.7071], -182 \text{ MHz}, \parallel [0, \overline{1}, 1]$
Diamond:	natural type I and II, after electron or fast neutron irradiation at low or at room temperature, anneals out at 200 $^{\circ}\mathrm{C}$
Remark:	D-tensor temperature dependent
Model:	three-vacancy chain, (impurity+di-interstitial) complex; new model: (impurity+interstitial) complex
Reference:	73K, 79L2, 83F1, 84L3, 88L1
Spectrum A	3
Spectrum A: Symmetry:	3 triclinic
Spectrum A Symmetry: Spin:	$ \begin{array}{c} 3 \\ \text{triclinic} \\ S=1 \end{array} $
Spectrum A Symmetry: Spin: g-tensor:	3 triclinic S=1 $g_1 = 2.0027, \parallel [+0.88, -0.18, -0.43]$ $g_2 = 2.0020, \perp [+0.88, -0.18, -0.43]$ $g_3 = 2.0020, \perp [+0.88, -0.18, -0.43]$
Spectrum A Symmetry: Spin: g-tensor: D-tensor:	Triclinic S=1 $g_1 = 2.0027, \parallel [+0.88, -0.18, -0.43]$ $g_2 = 2.0020, \perp [+0.88, -0.18, -0.43]$ $g_3 = 2.0020, \perp [+0.88, -0.18, -0.43]$ $D_1 = +416 \text{ MHz}, \parallel [+0.8520, +0.4245, +0.3065]$ $D_2 = -156 \text{ MHz}, \parallel [+0.0006, +0.5846, -0.8113]$ $D_3 = -260 \text{ MHz}, \parallel [-0.5236, +0.6914, +0.4978]$
Spectrum A Symmetry: Spin: g-tensor: D-tensor: Diamond:	Triclinic S=1 $g_1 = 2.0027$, $ [+0.88, -0.18, -0.43]$ $g_2 = 2.0020$, $\perp [+0.88, -0.18, -0.43]$ $g_3 = 2.0020$, $\perp [+0.88, -0.18, -0.43]$ $D_1 = +416$ MHz, $ [+0.8520, +0.4245, +0.3065]$ $D_2 = -156$ MHz, $ [+0.0006, +0.5846, -0.8113]$ $D_3 = -260$ MHz, $ [-0.5236, +0.6914, +0.4978]$ natural type I and II, after electron or fast neutron irradiation at low or at room temperature, anneals out at 200 °C
Spectrum A Symmetry: Spin: g-tensor: D-tensor: Diamond: Model:	triclinic S=1 $g_1 = 2.0027$, [+0.88, -0.18, -0.43] $g_2 = 2.0020$, \bot [+0.88, -0.18, -0.43] $g_3 = 2.0020$, \bot [+0.88, -0.18, -0.43] $D_1 = +416$ MHz, [+0.8520, +0.4245, +0.3065] $D_2 = -156$ MHz, [+0.0006, +0.5846, -0.8113] $D_3 = -260$ MHz, [-0.5236, +0.6914, +0.4978] natural type I and II, after electron or fast neutron irradiation at low or at room temperature, anneals out at 200 °C (di-interstitial + impurity) complex; new model: (impurity + interstitial) complex
Spectrum A Symmetry: Spin: g-tensor: D-tensor: Diamond: Model: Reference:	Triclinic S=1 $g_1 = 2.0027$, [+0.88, -0.18, -0.43] $g_2 = 2.0020$, \bot [+0.88, -0.18, -0.43] $g_3 = 2.0020$, \bot [+0.88, -0.18, -0.43] $D_1 = +416$ MHz, [+0.8520, +0.4245, +0.3065] $D_2 = -156$ MHz, [+0.0006, +0.5846, -0.8113] $D_3 = -260$ MHz, [-0.5236, +0.6914, +0.4978] natural type I and II, after electron or fast neutron irradiation at low or at room temperature, anneals out at 200 °C (di-interstitial + impurity) complex; new model: (impurity + interstitial) complex 73K, 83F1, 84L3, 88L1
Spectrum A Symmetry: Spin: g-tensor: D-tensor: Diamond: Model: Reference: Spectrum A	triclinic S=1 $g_1 = 2.0027$, [+0.88, -0.18, -0.43] $g_2 = 2.0020$, \bot [+0.88, -0.18, -0.43] $g_3 = 2.0020$, \bot [+0.88, -0.18, -0.43] $D_1 = +416$ MHz, [+0.8520, +0.4245, +0.3065] $D_2 = -156$ MHz, [+0.0006, +0.5846, -0.8113] $D_3 = -260$ MHz, [-0.5236, +0.6914, +0.4978] natural type I and II, after electron or fast neutron irradiation at low or at room temperature, anneals out at 200 °C (di-interstitial + impurity) complex; new model: (impurity + interstitial) complex 73K, 83F1, 84L3, 88L1
Spectrum A Symmetry: Spin: g-tensor: D-tensor: Diamond: Model: Reference: Spectrum A Symmetry:	triclinic S=1 $g_1 = 2.0027$, $ [+0.88, -0.18, -0.43]$ $g_2 = 2.0020$, $\bot [+0.88, -0.18, -0.43]$ $g_3 = 2.0020$, $\bot [+0.88, -0.18, -0.43]$ $D_1 = +416$ MHz, $ [+0.8520, +0.4245, +0.3065]$ $D_2 = -156$ MHz, $ [+0.0006, +0.5846, -0.8113]$ $D_3 = -260$ MHz, $ [-0.5236, +0.6914, +0.4978]$ natural type I and II, after electron or fast neutron irradiation at low or at room temperature, anneals out at 200 °C (di-interstitial + impurity) complex; new model: (impurity + interstitial) complex 73K, 83F1, 84L3, 88L1
Spectrum A Symmetry: Spin: g-tensor: D-tensor: Diamond: Model: Reference: Spectrum A Symmetry: Spin:	3 triclinic S=1 $g_1 = 2.0027$, [+0.88, -0.18, -0.43] $g_2 = 2.0020$, \bot [+0.88, -0.18, -0.43] $g_3 = 2.0020$, \bot [+0.88, -0.18, -0.43] $D_1 = +416$ MHz, [+0.8520, +0.4245, +0.3065] $D_2 = -156$ MHz, [+0.0006, +0.5846, -0.8113] $D_3 = -260$ MHz, [-0.5236, +0.6914, +0.4978] natural type I and II, after electron or fast neutron irradiation at low or at room temperature, anneals out at 200 °C (di-interstitial + impurity) complex; new model: (impurity + interstitial) complex 73K, 83F1, 84L3, 88L1 7 isotropic S=1 (tentative value)
Spectrum A Symmetry: Spin: g-tensor: D-tensor: Diamond: Model: Reference: Spectrum A Symmetry: Spin: g-tensor:	Triclinic S=1 $g_1 = 2.0027$, [+0.88, -0.18, -0.43] $g_2 = 2.0020$, \bot [+0.88, -0.18, -0.43] $g_3 = 2.0020$, \bot [+0.88, -0.18, -0.43] $D_1 = +416$ MHz, [+0.8520, +0.4245, +0.3065] $D_2 = -156$ MHz, [+0.0006, +0.5846, -0.8113] $D_3 = -260$ MHz, [-0.5236, +0.6914, +0.4978] natural type I and II, after electron or fast neutron irradiation at low or at room temperature, anneals out at 200 °C (di-interstitial + impurity) complex; new model: (impurity + interstitial) complex 73K, 83F1, 84L3, 88L1 7 isotropic S=1 (tentative value) $(g_1 + g_2 + g_3)/3 = 2.00$
Spectrum A Symmetry: Spin: g-tensor: D-tensor: Diamond: Model: Reference: Spectrum A Symmetry: Spin: g-tensor: D-tensor:	triclinic S=1 $g_1 = 2.0027$, [+0.88, -0.18, -0.43] $g_2 = 2.0020$, \bot [+0.88, -0.18, -0.43] $g_3 = 2.0020$, \bot [+0.88, -0.18, -0.43] $D_1 = +416$ MHz, [+0.8520, +0.4245, +0.3065] $D_2 = -156$ MHz, [+0.0006, +0.5846, -0.8113] $D_3 = -260$ MHz, [-0.5236, +0.6914, +0.4978] natural type I and II, after electron or fast neutron irradiation at low or at room temperature, anneals out at 200 °C (di-interstitial + impurity) complex; new model: (impurity + interstitial) complex 73K, 83F1, 84L3, 88L1 7 isotropic S=1 (tentative value) $(g_1 + g_2 + g_3)/3 = 2.00$ $D_{ } = +112$ MHz P = 56 MHz
Spectrum A Symmetry: Spin: g-tensor: D-tensor: Diamond: Model: Reference: Spectrum A Symmetry: Spin: g-tensor: D-tensor: D-tensor:	Triclinic S=1 $g_1 = 2.0027$, $ [+0.88, -0.18, -0.43]$ $g_2 = 2.0020, \perp [+0.88, -0.18, -0.43]$ $g_3 = 2.0020, \perp [+0.88, -0.18, -0.43]$ $D_1 = +416$ MHz, $ [+0.8520, +0.4245, +0.3065]$ $D_2 = -156$ MHz, $ [+0.0006, +0.5846, -0.8113]$ $D_3 = -260$ MHz, $ [-0.5236, +0.6914, +0.4978]$ natural type I and II, after electron or fast neutron irradiation at low or at room temperature, anneals out at 200 °C (di-interstitial + impurity) complex; new model: (impurity + interstitial) complex 73K, 83F1, 84L3, 88L1 7 isotropic S=1 (tentative value) $(g_1 + g_2 + g_3)/3 = 2.00$ $D_{ } = +112$ MHz $D_{\perp} = -56$ MHz synthetic boron doned, after electron irradiation
Spectrum A Symmetry: Spin: g-tensor: D-tensor: Diamond: Model: Reference: Spectrum A Symmetry: Spin: g-tensor: D-tensor: D-tensor: D-tensor:	triclinic $S=1$ $g_1 = 2.0027, [+0.88, -0.18, -0.43]$ $g_2 = 2.0020, \perp [+0.88, -0.18, -0.43]$ $g_3 = 2.0020, \perp [+0.88, -0.18, -0.43]$ $D_1 = +416 \text{ MHz}, [+0.8520, +0.4245, +0.3065]$ $D_2 = -156 \text{ MHz}, [+0.0006, +0.5846, -0.8113]$ $D_3 = -260 \text{ MHz}, [-0.5236, +0.6914, +0.4978]$ natural type I and II, after electron or fast neutron irradiation at low or at room temperature, anneals out at 200 °C (di-interstitial + impurity) complex; new model: (impurity + interstitial) complex 73K, 83F1, 84L3, 88L1 7 isotropic $S=1 \text{ (tentative value)}$ $(g_1 + g_2 + g_3)/3 = 2.00$ $D_{ } = +112 \text{ MHz}$ $D_{\perp} = -56 \text{ MHz}$ synthetic, boron doped, after electron irradiation resonance may be due to cavity contamination
Spectrum A Symmetry: Spin: g-tensor: D-tensor: Diamond: Model: Reference: Spectrum A Symmetry: Spin: g-tensor: D-tensor: D-tensor: D-tensor:	triclinic $S=1$ $g_1 = 2.0027, [+0.88, -0.18, -0.43]$ $g_2 = 2.0020, \perp [+0.88, -0.18, -0.43]$ $g_3 = 2.0020, \perp [+0.88, -0.18, -0.43]$ $D_1 = +416 \text{ MHz}, [+0.8520, +0.4245, +0.3065]$ $D_2 = -156 \text{ MHz}, [+0.0006, +0.5846, -0.8113]$ $D_3 = -260 \text{ MHz}, [-0.5236, +0.6914, +0.4978]$ natural type I and II, after electron or fast neutron irradiation at low or at room temperature, anneals out at 200 °C (di-interstitial + impurity) complex; new model: (impurity + interstitial) complex 73K, 83F1, 84L3, 88L1 7 isotropic $S=1 \text{ (tentative value)}$ $(g_1 + g_2 + g_3)/3 = 2.00$ $D_{ } = +112 \text{ MHz}$ $D_{\perp} = -56 \text{ MHz}$ synthetic, boron doped, after electron irradiation resonance may be due to cavity contamination 77B, 82F2

Spectrum A8	3
Symmetry:	isotropic
Spin:	S=1 (tentative value)
g-tensor:	$(g_1 + g_2 + g_3)/3 = 2.00$
D -tensor:	$D_{\parallel} = +62 \text{ MHz}$ $D_{\perp} = -31 \text{ MHz}$
Diamond:	synthetic, boron doped, after electron irradiation
Remark:	resonance may be due to cavity contamination
Reference:	77B, 82F2
Spectrum No	Ó
Symmetry:	monoclinic-I
Spin:	S = 5/2
g-tensor:	measured at frequency 9.5 GHz
	$g_1 = 4.4924, \parallel [0, -0.7071, +0.7071]$
	$g_2 = 4.6684$, [+0.9537, +0.2126, +0.2126] $g_2 = 4.0192$ [-0.3007, +0.6744, +0.6744]
D-tensor:	$g_3 = 4.0192$, $\ [-0.5007, +0.0744, +0.0744]$
a-tensor:	measured at frequency 35.5 GHz
g tensor.	$g_1 = 4.0129, \parallel \begin{bmatrix} 0 & , -0.7071, +0.7071 \end{bmatrix}$
	$g_2 = 4.0274$, [+0.9537, +0.2126, +0.2126]
	$g_3 = 3.8607, \parallel [-0.3007, +0.6744, +0.6744]$
Diamond:	natural, after 3.5 MeV electron irradiation at room temperature
Remark:	original label A-system
Model:	possibly transition metal impurity (iron)
Reference:	78N
Spectrum N7	7
Spin:	S = 5/2
g-tensor:	measured at frequency 9.5 GHz
	$(g_1 + g_2 + g_3)/3 = 4.3$
D -tensor:	E/D=0.33
Diamond:	natural, after 3.5 MeV electron irradiation at room temperature
Remark:	original label B-system
Model:	possibly transition metal impurity (iron)
Reference:	/8N
Spectrum O1	l (Figs. 13 and 15)
Symmetry:	monoclinic-I
Spin:	S=1
g -tensor:	$g_1 = 2.0022, \parallel [0, \overline{1}, 1]$ $g_2 = 2.0020, \parallel [1, 0, 0]$ $g_2 = 2.0014, \parallel [0, 1, 1]$
Datenson	$g_3 = 2.0014$, [0, 1, 1] $D_{-} = -108.2 \text{ MHz}$ [0, -0.707 ± 0.707]
D-tensor.	$D_1 = -108.2$ MH2, [100^{-1} , -0.707 , $+0.707$] $D_2 = -96.8$ MH2, [$+1.000$, -0.005 , -0.005] $D_3 = +205.0$ MH2, [$+0.007$, $+0.707$, $+0.707$]
Diamond:	natural type I and IIa, after neutron or electron irradiation and annealing, anneals out at 1100 $^{\circ}\mathrm{C}$
Model:	4-vacancy chain, (three-vacancy + substitutional oxygen) chain, (four-vacancy + interstitial oxygen) chain
Reference:	54G, 55G, 73L1, 77L1, 77L2, 84L2, 85L1, 86L, 88L1

Landolt-Börnstein New Series III/22 b

Spectrum O2	2	
Symmetry:	isotropic	
Spin:	S = 1/2	
g-tensor:	$(g_1 + g_2 + g_3)/3 = 2.0028$	
Diamond:	natural, after neutron irradiation	
Reference:	54G, 55G, 67B	
Spectrum R1	(Fig. 15)	
Symmetry:	monoclinic-I	
Spin:	S=1	
a -tensor:	$(q_1 + q_2 + q_3)/3 = 2.00$	
D -tensor:	$D_1 = -1401 \text{ MHz}, \parallel [0, \bar{1}, 1]$	
	$D_2 = +2802 \text{ MHz}, \parallel [4, 9, 9]$	
	$D_3 = -1401 \text{ MHz}, \parallel [\bar{9}, 2, 2]$	
A-tensor:	nucleus ¹³ C, spin $I = 1/2$, abundance 1.1% $A_1 = 123 \text{ MHz} \parallel [0, \overline{1}, 1]$	
A-tensor:	nucleus ¹³ C	
	$A_1 = 44.4 \text{ MHz}, \parallel [0, \overline{1}, 1]$	
	$A_2 = 39.9 \text{ MHz}, \parallel [4, 9, 9]$	
	$A_3 = 43.8 \text{ MHz}, \parallel [9, 2, 2]$	
A-tensor:	nucleus 13 C $4 - 30.6 \text{ MHz} \parallel [0, \overline{1}, 1]$	
	$A_1 = 50.0 \text{ MHz}, \parallel [0, 1, 1]$ $A_2 = 24.3 \text{ MHz}, \parallel [4, 9, 9]$	
	$A_3 = 27.3 \text{ MHz}, \parallel [9, 2, 2]$	
Diamond:	natural type I and II, after 2 MeV electron or fast neutron irradiation, anneals out at $300\cdots400$ °C	
Remark:	original label b-system	
Model:	(impurity + interstitial carbon) complex	
Reference:	62F, 77L1, 83L2, 85L1, 88L1	
Spectrum R2	2 (Fig. 15)	
Symmetry:	tetragonal	
Spin:	<i>S</i> =1	
g -tensor:	$(g_1 + g_2 + g_3)/3 = 2.00$	
D-tensor:	$D_{\parallel} = +2760 \text{ MHz}, \parallel [1, 0, 0]$	
	$D_{\perp} = -1380 \text{ MHz}, \perp [1, 0, 0]$	
Diamond:	natural type I and II, after electron or neutron irradiation at low and at room temperature, anneals out at 400500 °C	
Remarks:	excited state ≈ 37 meV above diamagnetic ground state, original label c-system	
Model:	(impurity + interstitial carbon) complex	
Reference:	62F, 63H, 77L1, 85L1	
Spectrum R3	3 (Fig. 15)	
Symmetry:	triclinic	
Spin:	<i>S</i> =1	
g -tensor:	$g_1 = 2.0019, \parallel [+0.758, +0.650, -0.051]$ $g_2 = 2.0024, \perp [+0.758, +0.650, -0.051]$ $g_3 = 2.0024, \perp [+0.758, +0.650, -0.051]$	
D -tensor:	$D_1 = +275.8 \text{ MHz}, \parallel [+0.928, +0.310, +0.206]$ $D_2 = -123.2 \text{ MHz}, \parallel [-0.242, +0.082, +0.967]$ $D_3 = -152.6 \text{ MHz}, \parallel [+0.283, -0.947, +0.151]$	
Diamond	natural type I and II. after fast neutron or electron irradiation at low or at room temperature.	
	anneals out at 500600 °C	

Remark: Model:	original label d-system (impurity + interstitial carbon) complex		
Reference:	62F, 78L3, 82F2, 85L1, 88L1		
Spectrum R4	4 (Figs. 13, 14 and 15)		
Symmetry:	monoclinic-I		
Spin:	<i>S</i> =1		
g -tensor:	$(g_1 + g_2 + g_3)/3 = 2.00$ small anisotropy detectable		
D -tensor:	$D_1 = -104 \text{ MHz}, \parallel [0, \overline{1}, 1]$ $D_2 = +310 \text{ MHz}, \parallel [1, 1, 1]$ $D_3 = -206 \text{ MHz}, \parallel [\overline{2}, 1, 1]$		
Diamond:	natural type IIa, after 2 MeV electron irradiation, anneals in at 500 \cdots 600 °C, anneals out at 800 \cdots 900 °C		
Remarks:	original label e-system identical to spectrum W6		
Model:	(impurity + interstitial carbon) complex; preferred model: neutral divacancy		
Reference:	73L1, 77L1, 84L1, 85L1, 86L, 88L1		
Spectrum R	5 (Figs. 13 and 15)		
Symmetry:	orthorhombic-l		
Spin:	S=1		
D -tensor:	$(g_1 + g_2 + g_3)/5 = 2.00$ 77 K · D 230 MHz 293 K · - 305 MHz [1 0 0]		
D-tensor.	$D_2 = -190 \text{ MHz}, -265 \text{ MHz}, \parallel [1, 0, 0]$ $D_2 = -190 \text{ MHz}, -265 \text{ MHz}, \parallel [0, 1, 1]$ $D_3 = +420 \text{ MHz}, +570 \text{ MHz}, \parallel [0, \overline{1}, 1]$		
Diamond:	natural type IIa, after 2 MeV electron irradiation, anneals in at 850 °C, anneals out at 1150 °C		
Remark:	D-values temperature dependent		
Model:	3-vacancy chain, (divacancy + substitutional oxygen) complex, (three-vacancy + interstitial oxy- gen) complex		
Reference:	73L1, 77L1, 85L1, 86L, 88L1		
Spectrum Ro	6 (Figs. 13 and 15)		
Symmetry:	orthorhombic-I		
Spin:	S=1		
g -tensor:	$g_1 = 2.0021, [1, 0, 0]$ $g_2 = 2.0014, [0, 1, 1]$ $g_3 = 2.0021, [0, \overline{1}, 1]$		
D-tensor:	$D_1 = -62.2 \text{ MHz}, \parallel [1, 0, 0]$ $D_2 = +119.7 \text{ MHz}, \parallel [0, 1, 1]$		
	$D_3 = -57.5 \text{ MHz}, \parallel [0, \bar{1}, 1]$		
Diamond:	natural type IIa, after 2 MeV electron irradiation, anneals in at 800 °C, anneals out at 1100 °C		
Model:	5-vacancy chain, multi-oxygen-vacancy complex		
Reference:	73L1, 77L1, 85L1, 86L, 88L1		
Spectrum R7 (Fig. 15)			
Symmetry:	orthorhombic-I		
Spin:	S=1		
g-tensor:	$g_1 = 2.0025, \ [1, 0, 0]$ $g_2 = 2.0019, \ [0, 1, 1]$ $g_2 = 2.0028, \ [0, 1, 1]$		
	<i>δ</i> ₃ - <i>2</i> .0020, [0, 1, 1]		

Landolt-Börnstein New Series III/22b

 $D_1 = -159.6 \text{ MHz}, \parallel [1, 0, 0]$ D-tensor: $D_2 = +388.1 \text{ MHz}, \parallel [0, 1, 1]$ $D_3 = -228.5 \text{ MHz}, \parallel [0, \overline{1}, 1]$ natural type IIa, after 2 MeV electron irradiation, anneals in at 950 °C, anneals out at 1450 °C Diamond: earlier spin value S = 3/2 incorrect Remark: Model: multi-oxygen-vacancy complex (O_2V, O_2V_3) 73L1, 85L1, 86L, 88L1 Reference: Spectrum R8 (Fig. 15) Symmetry: orthorhombic-I Spin: S = 1 (or: S = 3/2) $(g_1 + g_2 + g_3)/3 = 2.00$ g-tensor: **D**-tensor: $D_1 = -168 \text{ MHz}, \parallel [1, 0, 0]$ $D_2 = +336$ MHz, || [0, 1, 1] $D_3 = -168 \text{ MHz}, \parallel [0, \overline{1}, 1]$ (for S = 3/2: $D_{\parallel [011]} = +168$ MHz, $D_{\perp [011]} = -84$ MHz) natural type IIa, after 2 MeV electron irradiation, anneals in at 900 °C, anneals out at 1400 °C Diamond: multi-oxygen-vacancy complex (O₃V₃), three-vacancy chain Model: Reference: 73L1, 85L1, 86L Spectrum R9 Symmetry: orthorhombic-I S = 1 (or: S = 3/2) Spin: g-tensor: $(g_1 + g_2 + g_3)/3 = 2.00$ $D_1 = -454$ MHz, $\parallel [1, 0, 0]$ **D**-tensor: $D_2 = +908$ MHz, $\parallel [0, 1, 1]$ $D_3 = -454 \text{ MHz}, \parallel [0, \overline{1}, 1]$ (for S = 3/2: $D_{\parallel [011]} = +454$ MHz, $D_{\perp [011]} = -227$ MHz) natural type IIa, after 2 MeV electron irradiation, anneals in at 900 °C, anneals out at 1250 °C Diamond: Model: oxygen-vacancy complex (O_sV, O_iV_2) Reference: 73L1, 86L Spectrum R10 (Fig. 15) Symmetry: orthorhombic-I S = 1 (or: S = 3/2) Spin: $(g_1 + g_2 + g_3)/3 = 2.00$ g-tensor: $D_1 = -35$ MHz, || [1, 0, 0] **D**-tensor: $D_2 = +70$ MHz, $\parallel [0, 1, 1]$ $D_3 = -35$ MHz, $\parallel [0, \bar{1}, 1]$ (for S = 3/2: $D_{\parallel [011]} = +35$ MHz, $D_{\perp [011]} = -17.5$ MHz) natural type IIa, after 2 MeV electron irradiation, anneals in at 900° C, anneals out at 1200° C Diamond: oxygen-multi-vacancy complex (O_sV₅, O_iV₆) Model: Reference: 73L1, 85L1, 86L Spectrum R11 (Fig. 15) Symmetry: orthorhombic-I S = 1 (or: S = 3/2) Spin: **q**-tensor: $(g_1 + g_2 + g_3)/3 = 2.00$ D-tensor: $D_1 = -27$ MHz, $\parallel [1, 0, 0]$ $D_2 = +54$ MHz, $\parallel [0, 1, 1]$ $D_3 = -27 \text{ MHz}, \parallel [0, \overline{1}, 1]$ (for S = 3/2: $D_{\parallel [011]} = +27$ MHz, $D_{\perp [011]} = -13.5$ MHz)

Ammerlaan

Landolt-Börnstein New Series III/22b

natural type IIa, after 2 MeV electron irradiation, anneals in at 950 °C, anneals out at 1150 °C Diamond: Model: oxygen-multi-vacancy complex $(O_s V_6, O_i V_7)$ Reference: 73L1, 85L1, 86L Spectrum R12 (Fig. 15) Symmetry: trigonal Spin: S = 1 (or: S = 3/2) g-tensor: $(g_1 + g_2 + g_3)/3 = 2.00$ $D_{\parallel} = +104 \text{ MHz}, \parallel [1, 1, 1]$ **D**-tensor: $D_{\perp} = -52$ MHz, $\perp [1, 1, 1]$ (for S = 3/2: $D_{\parallel [111]} = +52$ MHz, $D_{\perp [111]} = -26$ MHz) natural type IIa, after 2 MeV electron irradiation, anneals in at 1200 °C, still present after Diamond: anneal at 1650 °C Reference: 73L1, 85L1 Spectrum R13 (Fig. 15) Symmetry: triclinic S = 1Spin: $g_1 = 2.0021$, || [+0.696, +0.696, +0.174] g-tensor: $g_2 = 2.0029, \perp [+0.696, +0.696, +0.174]$ $g_3 = 2.0029, \perp [+0.696, +0.696, +0.174]$ $D_1 = +1365 \text{ MHz}, \parallel [+0.917, +0.301, +0.261]$ **D**-tensor: $D_2 = -515$ MHz, $\parallel [-0.039, -0.584, +0.811]$ $D_3 = -850 \text{ MHz}, \parallel [+0.396, -0.754, -0.524]$ natural type IIa, after 2 MeV electron irradiation at room temperature, anneals out at 400 °C Diamond: Model: (impurity + interstitial carbon) complex Reference: 83L2, 85L1, 88L1 Spectrum R14 (Fig. 15) Symmetry: triclinic Spin: S = 1g-tensor: $g_1 = 2.0018$, || [+0.264, +0.961, -0.087] $g_2 = 2.0022, \parallel [-0.857, +0.193, -0.478]$ $g_3 = 2.0025$, $\| [-0.443, +0.201, +0.874]$ $D_1 = +165.9 \text{ MHz}, \parallel [+0.916, +0.379, +0.132]$ **D**-tensor: $D_2 = -78.2 \text{ MHz}, \parallel [+0.140, +0.007, -0.990]$ $D_3 = -87.7 \text{ MHz}, \parallel [+0.376, -0.925, +0.046]$ natural type IIa, after 2 MeV electron irradiation at room temperature, anneals out at 600 °C Diamond: Model: (impurity + interstitial carbon) complex 84L2, 85L1, 88L1 Reference: Spectrum R15 (Fig. 15) Symmetry: triclinic Spin: S = 1g-tensor: $g_1 = 2.0018$, || [+0.52, +0.39, +0.76] $g_2 = 2.0023, \perp [+0.52, +0.39, +0.76]$ $g_3 = 2.0023, \perp [+0.52, +0.39, +0.76]$ **D**-tensor: $D_1 = +137.3 \text{ MHz}, \parallel [+0.719, +0.633, +0.288]$ $D_2 = -64.2 \text{ MHz}, \parallel [+0.695, -0.644, -0.319]$ $D_3 = -73.1$ MHz, $\parallel [-0.016, +0.429, -0.903]$ Diamond: natural type IIa, after 2 MeV electron irradiation at room temperature, anneals out at 500 °C Model: (impurity + interstitial carbon) complex Reference: 84L2, 85L1, 88L1

Landolt-Börnstein New Series III/22b

Figs. p. 201

Spectrum R1	6
Symmetry:	low
Spin:	S = 1/2
a -tensor:	$(g_1 + g_2 + g_3)/3 = 2.00, g_1 - g_3 = 0.0015$
Diamond.	natural type IIa, after 2 MeV electron irradiation at room temperature, anneals in at 700 °C.
214110114	anneals out at 900 °C
Remark:	values of parameters still tentative
Reference:	84L2, 86L, 88L1
	,,,
Spectrum R1	(Fig. 15)
Symmetry:	triclinic
Spin:	<i>S</i> =1
g -tensor:	$g_1 = 2.0020, \parallel [+0.437, +0.686, -0.582]$ $g_2 = 2.0026, \perp [+0.437, +0.686, -0.582]$ $g_3 = 2.0026, \perp [+0.437, +0.686, -0.582]$
D -tensor:	$D_1 = +245.8 \text{ MHz}, \parallel [+0.932, +0.311, +0.185]$ $D_2 = -95.0 \text{ MHz}, \parallel [+0.259, -0.930, +0.259]$ $D_2 = -150.8 \text{ MHz}, \parallel [+0.253, -0.193, -0.948]$
Diamond:	natural type IIa, after 2 MeV electron irradiation at room temperature, anneals in at 700 °C, still present after anneal at 1650 °C
Reference:	84L2, 85L1, 88L1
Spectrum R1	.8
Spin:	S = 1/2
g-tensor:	$(g_1 + g_2 + g_3)/3 = 2.0029$
Diamond:	natural type IIa, after 2 MeV electron irradiation at room temperature, anneals in at 900 °C, still present after anneal at 1650 °C
Reference:	86L
Spectrum S1	
Symmetry:	trigonal
Spin:	S = 1/2
a -tensor:	$(g_1 + g_2 + g_3)/3 = 2.0023$
A-tensor:	nucleus ¹³ C. spin $I=1/2$, abundance 1.1%, 4 sites
	$A_{\parallel} = 13.3 \text{ MHz}, \parallel [1, 1, 1]$
	$A_{\perp} = 9.3 \text{ MHz}, \perp [1, 1, 1]$
Diamond:	natural, after electron irradiation at low and at room temperature, anneals out at 800 $^{\circ}\mathrm{C}$
Remark:	original label A-center, a-system
Model:	positive or negative vacancy
Reference:	63B, 75L1, 78L2, 86L
Sma atmum S1	
Spectrum Sz	trigonal
Symmetry:	
Spin:	S = 1/2
g-tensor:	$(g_1 + g_2 + g_3)/3 = 2.0023$
A-tensor:	nucleus ¹ N, spin $I = 1$, abundance 99.03%, 1 site $A_{\parallel} = 70.7 \text{ MHz}, \parallel [1, 1, 1]$ $A_{\perp} = 40.9 \text{ MHz}, \parallel [1, 1, 1]$
Diamond	$m_{\perp} = 1000$ matrix, m_{\perp} (n_{\perp} , n_{\perp}) natural after electron irradiation
Remark.	original label A center a system
Model:	substitutional nitrogen \perp other defect
Reference:	63B 73L 2 75L 1 78L 2
Reference:	

(ci. p. 200)	4.1 Diamona (C)
Spectrum S	3
Symmetry:	isotropic
Spin:	S = 1/2
g -tensor:	$(g_1 + g_2 + g_3)/3 = 2.00238$
Diamond:	natural, after electron irradiation
Remark:	original label C-center
Reference:	63B, 78L2
Spectrum S	4
Symmetry:	isotropic
Spin:	S = 1/2
g-tensor:	$(g_1 + g_2 + g_3)/3 = 2.00234$
Diamond:	natural, after electron irradiation
Remarks:	two lines separated by $\approx 0.1 \text{ mT}$
	original label B-center
Reference:	63B, 78L2
Spectrum W	74
Symmetry:	monoclinic-I
Spin:	<i>S</i> =1
g -tensor:	$(g_1 + g_2 + g_3)/3 = 2.00$
D -tensor:	$D_1 = -74$ MHz, [1, 0, 0]
	$D_2 = +147 \text{ MHz}, \parallel [0, 1, 1]$ $D_3 = -74 \text{ MHz}, \parallel [0, \overline{1}, 1]$
Diamond:	natural type IIb, semiconducting, after 2 MeV electron irradiation at room temperature
Reference:	78L2, 79C
Spectrum W	/5
Symmetry:	monoclinic-I
Spin:	<i>S</i> =1
g-tensor:	$(g_1 + g_2 + g_3)/3 = 2.00$
D-tensor:	$D_1 = -53 \text{ MHz}, \parallel [1, 0, 0]$
	$D_2 = +105 \text{ MHz}, \parallel [0, 1, 1]$
	$D_3 = -53 \text{ MHz}, \parallel [0, 1, 1]$
Diamond:	natural type IIb, semiconducting, after 2 MeV electron irradiation at room temperature
Reference:	78L2, 79C
Spectrum W	6 (Fig. 14)
Symmetry:	monoclinic-I
Spin:	<i>S</i> =1
g-tensor:	$g_1 = 2.0024, \parallel [0, \bar{1}, 1]$
	$g_2 = 1.9996, \parallel [1, 1, 1]$ $g_3 = 2.0022, \parallel [\overline{2}, 1, 1]$
D -tensor:	$D_1 = -112 \text{ MHz}, \parallel [0, \bar{1}, 1]$ $D_2 = +314 \text{ MHz}, \parallel [1, 1, 1]$
	$D_3 = -202 \text{ MHz}, \parallel [\bar{2}, 1, 1]$
Diamond:	natural type IIa, after 2 MeV electron irradiation at low and at room temperature
Remark:	identical to spectrum R4
Model:	(impurity + interstitial carbon) complex
Reference:	75L2, 77L1, 78L3

Landolt-Börnstein New Series III/22 b

Spectrum W11	
Symmetry triclinic	
Spin: $S=1$ (or: $S=3/2$)	
$\frac{g_{-1}}{g_{-1}} = \frac{g_{-1}}{(g_{-1} + g_{-1})^2} = \frac{g_{-1}}{2} = \frac{g_{-1}}{2}$	
D -tensor: $D = 872$ MHz $\parallel [\pm 0.695 \pm 0.509 \pm 0.509]$	
(for $S = 3/2$: $D_1 = 436$ MHz)	
Diamond: natural type Ib, after neutron irradiation, anneals out at 200 °C	
Reference: 78L2, 87W	
Spectrum W12	
Symmetry: triclinic	
Spin: $S = 1$ (or: $S = 3/2$)	
g -tensor: $(g_1 + g_2 + g_3)/3 = 2.00$	
D -tensor: $D_1 = 960 \text{ MHz}, \parallel [+0.606, +0.562, +0.562]$	
(for $S = 3/2$: $D_1 = 480$ MHz)	
Diamond: natural type Ib, after neutron irradiation, anneals out at 400 °C	
Reference: 78L2, 87W	
Spectrum W13	
Symmetry: monoclinic-I	
Spin: $S = 1$ (or: $S = 3/2$)	
g -tensor: $g_1 = 1.995$, [0 , -0.707, +0.707]	
$g_2 = 2.008, \parallel [+0.738, +0.477, +0.477]$	
$g_3 = 1.993, \parallel [-0.674, +0.522, +0.522]$	
D -tensor: $D_1 = -366 \text{ MHz}, \parallel [0, -0.707, +0.707]$	
$D_2 = +992$ MHz, $\ [+0.738, +0.477, +0.477]$	
$D_3 = -020 \text{ MHZ}, \parallel [-0.0/4, +0.322, +0.322]$ (for S = 3/2: $D_2 = -183 \text{ MHZ}, D_2 = +496 \text{ MHZ}, D_3 = -313 \text{ MHZ}$	7)
Diamond: natural type Ib after neutron irradiation anneals out at $400 ^{\circ}\text{C}$	-)
Reference: 781.2 87W	

Spectrum W14

=	
Symmetry:	monoclinic-I
Spin:	S = 1 (or: $S = 3/2$)
g-tensor:	$g_1 = 1.993, \parallel [0, -0.707, +0.707]$
	$g_2 = 2.007$, [+0.603, +0.564, +0.564]
	$g_3 = 1.989, \parallel [-0.798, +0.427, +0.427]$
D -tensor:	$D_1 = -692 \text{ MHz}, \parallel [0, -0.707, +0.707]$
	$D_2 = +1085 \text{ MHz}, \parallel [+0.603, +0.564, +0.564]$
	$D_3 = -393 \text{ MHz}, \parallel [-0.798, +0.427, +0.427]$
	(for $S = 3/2$: $D_1 = -346$ MHz, $D_2 = +543$ MHz, $D_3 = -197$ MHz)
Diamond:	natural type Ib, after neutron irradiation, anneals out at 400 °C
Reference:	78L2, 87W
Spectrum W	15 (Fig. 16)
Symmetry:	trigonal
Spin:	<i>S</i> = 1
g -tensor:	$g_{\parallel} = 2.0028, \parallel [1, 1, 1]$
	$g_{\perp} = 2.0028, \perp [1, 1, 1]$
D-tensor:	$D_{\parallel} = +1916 \text{ MHz}, \parallel [1, 1, 1]$
	$D_{\perp} = -958 \text{ MHz}, \perp [1, 1, 1]$

Landolt-Börnstein New Series III/22b

Ammerlaan

Ref. p. 205]	4.1 Diamond (C) Figs. p. 201
A-tensor:	nucleus ¹⁴ N, spin $I = 1$, abundance 99.63%, 1 site $A_{\parallel} = -2.2$ MHz, $\parallel [1, 1, 1]$ $A_{\perp} = -2.6$ MHz, $\perp [1, 1, 1]$
Q -tensor:	nucleus ¹⁴ N, 1 site $Q_{\parallel} = -3.4 \text{ MHz}, \parallel [1, 1, 1]$ $Q_{\perp} = +1.7 \text{ MHz}, \perp [1, 1, 1]$
A-tensor:	nucleus ¹³ C, spin $I = 1/2$, abundance 1.1%, 3 sites $A_{\parallel} = 205 \text{ MHz}, \parallel [+0.627, -0.551, -0.551]$ $A_{\perp} = 123 \text{ MHz}, \perp [+0.627, -0.551, -0.551]$
Diamond:	natural type Ib, after electron or neutron irradiation, anneals in at 700 °C, still present after anneal at 1300 °C
Model: Reference:	nitrogen-vacancy pair, see Fig. 16 77L3, 78L2, 87W, 88L2
Spectrum W	16
Symmetry:	monoclinic-I
Spin:	S = 1 (or: $S = 3/2$)
g-tensor:	$g_1 = 2.0026, \parallel [0 , -0.707, +0.707]$ $g_2 = 2.0029, \parallel [+0.614, +0.558, +0.558]$ $g_3 = 2.0022, \parallel [-0.789, +0.434, +0.434]$
D-tensor:	$D_1 = -803 \text{ MHz}, \ [0, -0.707, +0.707]$ $D_2 = +1652 \text{ MHz}, \ [+0.614, +0.558, +0.558]$ $D_3 = -849 \text{ MHz}, \ [-0.789, +0.434, +0.434]$ (for $S = 3/2$: $D_1 = -402 \text{ MHz}, D_2 = +826 \text{ MHz}, D_3 = -425 \text{ MHz})$
Diamond :	natural type Ib, after electron or neutron irradiation, anneals in at 800 °C, still present after anneal at 1400 °C
Reference:	78L2, 87W
Spectrum W	17
Symmetry:	triclinic
Spin:	S = 1 (or: $S = 3/2$)
g -tensor:	$g_1 = 2.0025$, [+0.289, -0.819, -0.496] $g_2 = 2.0033$, [+0.620, +0.555, -0.555] $g_3 = 2.0018$, [+0.730, -0.147, +0.668]
D-tensor:	$D_1 = -717 \text{ MHz}, \ [+0.289, -0.819, -0.496]$ $D_2 = +1568 \text{ MHz}, \ [+0.620, +0.555, -0.555]$ $D_3 = -851 \text{ MHz}, \ [+0.730, -0.147, +0.668]$ (for $S = 3/2$: $D_1 = -359 \text{ MHz}, D_2 = +784 \text{ MHz}, D_3 = -426 \text{ MHz}$)
Diamond:	natural type Ib, after electron or neutron irradiation, anneals in at 900 °C, still present after anneal at 1400 °C
Reference:	78L2, 87W
Spectrum W	/18
Symmetry:	monoclinic-I
Spin:	S = 1 (or: $S = 3/2$)
g-tensor:	$g_1 = 2.0027, \parallel [0, -0.707, +0.707]$ $g_2 = 2.0033, \parallel [+0.617, +0.556, +0.556]$ $g_3 = 2.0018, \parallel [-0.787, +0.436, +0.436]$
D-tensor:	$D_1 = -666 \text{ MHz}, \parallel [0, -0.707, +0.707]$ $D_2 = +1421 \text{ MHz}, \parallel [+0.617, +0.556, +0.556]$ $D_3 = -753 \text{ MHz}, \parallel [-0.787, +0.436, +0.436]$ (for $S = 3/2$: $D_1 = -333 \text{ MHz}, D_2 = +711 \text{ MHz}, D_3 = -377 \text{ MHz}$)

Landolt-Börnstein New Series III/22b

L

195

Figs. p. 201

Diamond: natural type Ib, after electron or neutron irradiation, anneals in at 900 °C, still present after anneal at 1400 °C 78L2, 87W Reference: Spectrum W19 Symmetry: monoclinic-I S = 1 (or: S = 3/2) Spin: , -0.707, +0.707] g-tensor: $g_1 = 2.0031, \parallel [0]$ $g_2 = 2.0028$, || [+0.347, +0.663, +0.663] $g_3 = 2.0029$, || [-0.938, +0.245, +0.245] **D**-tensor: $D_1 = -333$ MHz, || [0 , -0.707, +0.707 $D_2 = +941$ MHz, $\parallel [+0.347, +0.663, +0.663]$ $D_3 = -608$ MHz, $\parallel [-0.938, +0.245, +0.245]$ (for S = 3/2: $D_1 = -167$ MHz, $D_2 = +471$ MHz, $D_3 = -304$ MHz) Diamond: natural type Ib diamond, after electron or neutron irradiation, after anneal at 900 °C Reference: 78L2 Spectrum W20 Symmetry: monoclinic-I Spin: S = 1/2g-tensor: , -0.707, +0.707] $g_1 = 2.100, \parallel [0]$ $g_2 = 2.074$, || [+0.259, +0.683, +0.683] $g_3 = 2.018$, $\| [-0.966, +0.183, +0.183]$ natural type Ib, after electron irradiation and anneal at 400 °C Diamond: 78L2 Reference: Spectrum W29 Symmetry: monoclinic-I Spin: S = 1 (or: S = 3/2) g-tensor: $g_1 = 2.002, \parallel [0]$, -0.707, +0.707] $g_2 = 2.005, \parallel [+0.623, -0.553, -0.553]$ $g_3 = 1.997, \parallel [+0.783, +0.440, +0.440]$ $D_1 = -596 \text{ MHz}, \parallel [0]$, -0.707, +0.707] **D**-tensor: $D_2 = +907 \text{ MHz}, \parallel [+0.623, -0.553, -0.553]$ $D_3 = -311$ MHz, || [+0.783, +0.440, +0.440] (for S = 3/2: $D_1 = -298$ MHz, $D_2 = +454$ MHz, $D_3 = -156$ MHz) natural type I, after neutron or electron irradiation, anneals in above 500 °C, anneals out above Diamond: 800 °C 83F2, 87W, 88L2 Reference: Spectrum W33 Symmetry: monoclinic-I S = 1 (or: S = 3/2) Spin: g-tensor: $(g_1 + g_2 + g_3)/3 = 2.003$ $D_1 = -1175$ MHz, || [0 , -0.707, +0.707] $D_2 = +1857$ MHz, || [+0.515, -0.606, -0.606] **D**-tensor: $D_3 = -682$ MHz, || [+0.857, +0.364, +0.364](for S = 3/2: $D_1 = -588$ MHz, $D_2 = +929$ MHz, $D_3 = -341$ MHz) Diamond: natural and synthetic type Ib, after neutron irradiation, anneals in at 700 °C, anneals out at 1100 °C Reference: 87W, 88L2

Ammerlaan

Landolt-Börnstein New Series III/22b

Spectrum W	/34
Symmetry:	monoclinic-I
Spin:	S=1 (or: $S=3/2$)
a -tensor:	$(g_1 + g_2 + g_3) = 2.002$
D -tensor:	$D_1 = -240 \text{ MHz}, \parallel [0 , -0.707, +0.707]$
	$D_2 = +766 \text{ MHz}, \parallel [+0.751, -0.467, -0.467]$
	$D_3 = -526 \text{ MHz}, \parallel [+0.660, +0.531, +0.531]$
	(for $S = 3/2$: $D_1 = -120$ MHz, $D_2 = +383$ MHz, $D_3 = -263$ MHz)
Diamond:	natural and synthetic type Ib, after irradiation, anneals in at 800 °C, anneals out at 1100 °C
Reference:	87W, 88L2
	4.1.3.5 Ion implantation defects
	CERP
Properti	es of EPR spectra for ion implantation-induced centers in diamond are complied in Table 5.
Table 5. EP	R spectra related to ion implantation.
Spectrum A	4
Symmetry:	trigonal
Spin:	<i>S</i> =1
q -tensor:	$(g_1 + g_2 + g_3)/3 = 2.0023$
D-tensor:	small
Diamond:	natural type IIa, after nitrogen ion implantation
Reference:	74B2
Spectrum A	5
Symmetry:	monoclinic-I
Spin:	<i>S</i> =1
g-tensor:	$(g_1 + g_2 + g_3) = 2.0023$
D-tensor:	$D_1 = -103.7 \text{ MHz}, \parallel [0, -0.7071, +0.7071]$
	$D_2 = +300.0 \text{ MHz}, \parallel [+0.6157, +0.5572, +0.5572]$
	$D_3 = -196.3 \text{ MHz}, \parallel [-0.7880, +0.4353, +0.4353]$
Diamond:	natural type IIa, after carbon or nitrogen implantation
Model:	hexavacancy ring
Reference:	78L1
Spectrum A	6
Symmetry:	orthorhombic-I
Spin:	<i>S</i> =1
g-tensor:	$(g_1 + g_2 + g_3)/3 = 2.0023$
D-tensor:	$D_1 = -96$ MHz, [1, 0, 0]
	$D_2 = +192 \text{ MHz}, \parallel [0, 1, 1]$ $D_3 = -96 \text{ MHz}, \parallel [0, \overline{1}, 1]$
Diamond:	natural type IIa, after carbon or nitrogen implantation
Model:	multivacancy cluster
Reference:	78L1

Landolt-Börnstein New Series III/22b

l

Figs. p. 201

Spectrum A	11	
Symmetry:	isotropic	
Spin:	S = 1/2	
g -tensor:	$(g_1 + g_2 + g_3)/3 = 2.0023$	
Diamond :	natural, ion (B, C, N, Sb) implanted	
Model:	amorphous carbon, implantation damage	
Reference:	74B1, 75M, 78L1, 79T	
_	4.1.3.6 Miscellaneous centers	
Propertie	es of EPR spectra for miscellaneous centers in diamond are compiled in Table 6.	
Table 6. EP	R spectra of miscellaneous centers.	
Spectrum L	l .	
Spin:	S = 1/2	
g -tensor:	$g_1 = 2.000$	
	$g_2 = 2.000$	
A tomaon.	$g_3 = 2.000$	
A-tensor:	nucleus SI, spin $I = 1/2$, abundance 4.778 $A_1 = 196 \text{ MHz}$	
	$A_2 = 232 \text{ MHz}$	
	$A_3 = 251 \text{ MHz}$	
Diamond:	natural type Ia	
Model:	native (silicon + impurity) center (tentative)	
Reference:	77M	
Spectrum N	2	
Symmetry:	isotropic	
Spin:	S = 1/2	
g-tensor:	$(g_1 + g_2 + g_3)/3 = 2.003$	
Diamond:	natural, plastically deformed	
Model:	dislocation-related center	
Reference:	75\$	
Spectrum N	5	
Symmetry:	axial	
Spin:	S = 1/2	
g-tensor:	$(g_1 + g_2 + g_3)/3 = 2.0027$	
A-tensor:	nucleus ¹³ C, spin $I = 1/2$, abundance 1.1%, 12 sites	
	$A_{\parallel} = 667 \text{ MHz}$	
	$A_{\perp} = 336 \text{ MHz}$	
Diamond:	natural type 1, crushed	
Model:	surface center	
Keierence:	0/52	
Spectrum TI1		
Symmetry:	isotropic	
Spin:	S = 1/2	
g-tensor:	$(g_1 + g_2 + g_3)/3 = 2.0027$	

Diamond: pulverized Model: surface damage Reference: 61W, 67B, 67S2 Spectrum W1 Symmetry: orthorhombic-I S = 1Spin: $g_1 = 2.0029, \parallel [1, 0, 0]$ **g**-tensor: $g_2 = 2.0026, \parallel [0, 1, 1]$ $g_3 = 2.0029, \parallel [0, \bar{1}, 1]$ $D_1 = -217 \text{ MHz}, \parallel [1, 0, 0]$ **D**-tensor: $D_2 = +374$ MHz, $\parallel [0, 1, 1]$ $D_3 = -157 \text{ MHz}, \parallel [0, \overline{1}, 1]$ Diamond: natural type Ib Remark: possibly produced by geological irradiation Model: native center Reference: 71S1, 73L1 Spectrum W2 Symmetry: orthorhombic-I Spin: S = 1**g**-tensor: $g_1 = 2.0030, \parallel [1, 0, 0]$ $g_2 = 2.0027, \parallel [0, 1, 1]$ $g_3 = 2.0030, \parallel [0, \bar{1}, 1]$ $D_1 = -206 \text{ MHz}, \parallel [1, 0, 0]$ **D**-tensor: $D_2 = +411$ MHz, $\parallel [0, 1, 1]$ $D_3 = -206 \text{ MHz}, \parallel [0, \overline{1}, 1]$ Diamond: natural type Ib Remark: possibly produced by geological irradiation Model: native center Reference: 71S1, 73L1 Spectrum W3 Symmetry: orthorhombic-I Spin: S = 1 $g_1 = 2.0029, \parallel [1, 0, 0]$ **g**-tensor: $g_2 = 2.0026, \parallel [0, 1, 1]$ $g_3 = 2.0029, \parallel [0, \overline{1}, 1]$ $D_1 = -230$ MHz, $\parallel [1, 0, 0]$ **D**-tensor: $D_2 = +460 \text{ MHz}, \parallel [0, 1, 1]$ $D_3 = -230 \text{ MHz}, \parallel [0, \overline{1}, 1]$ Diamond: natural type Ib possibly produced by geological irradiation Remark: Model: native center Reference: 71S1, 73L1 Spectrum W9 Symmetry: monoclinic-I Spin: S = 1g-tensor: $(g_1 + g_2 + g_3)/3 = 2.002$ **D**-tensor: $D_{\parallel} = +132 \text{ MHz}, \parallel [0, \overline{1}, 1]$ $D_{\perp} = -66$ MHz, $\perp [0, \bar{1}, 1]$ natural type IIa, brown Diamond:

Landolt-Börnstein New Series III/22b

Ammerlaan

Model: native center 78L2, 87L1, 87L2 Reference: Spectrum W22 Symmetry: monoclinic-I S = 1/2Spin: , -0.707, +0.7071 g-tensor: $g_1 = 2.1096, \parallel [0]$ $g_2 = 2.0817$, || [+0.940, +0.242, +0.242] $g_3 = 2.0216$, $\| [-0.342, +0.664, +0.664] \|$ Diamond: natural type Ib Model: related to oxygen (tentative) Reference: 79L1 Spectrum W23 Symmetry: monoclinic-I S = 1/2Spin: g-tensor: $g_1 = 2.1121, \parallel [0, -0.707, +0.707]$ $g_2 = 2.0833$, || [+0.940, +0.242, +0.242] $g_3 = 2.0197, \parallel [-0.342, +0.664, +0.664]$ Diamond: natural type Ib Model: related to oxygen (tentative) Reference: 79L1 Spectrum W31 Symmetry: trigonal Spin: S = 1/2 $g_{\parallel} = 2.0020, \parallel [1, 1, 1]$ g-tensor: $g_{\perp} = 2.0025, \perp [1, 1, 1]$ nucleus ³³S, spin I=3/2, abundance 0.75%, 1 site A-tensor: $A_{\parallel} = 1029 \text{ MHz}, \parallel [1, 1, 1]$ $A_{\perp} = 1034$ MHz, $\perp [1, 1, 1]$ nucleus ¹³C, spin I=1/2, abundance 1.1%, 4 sites A-tensor: $A_{\parallel} = 70.6 \text{ MHz}, \parallel [+0.485, +0.618, +0.618]$ $A_{\perp} = 45.1 \text{ MHz}, \perp [+0.485, +0.618, +0.618]$ nucleus ¹³C, 6 sites A-tensor: $A_{\parallel} = 14.9 \text{ MHz}, \parallel [1, 1, 1]$ $A_{\perp} = 9.8 \text{ MHz}, \perp [1, 1, 1]$ A-tensor: nucleus ¹³C, 12 sites $(A_1 + A_2 + A_3)/3 = 4.8$ MHz Diamond: natural type Ib, after heating to above 300 °C in dark Model: (interstitial) S⁺ Reference: 82W1, 86W Spectrum W35 Symmetry: monoclinic-I Spin: S = 1g-tensor: $(g_1 + g_2 + g_3)/3 = 1.998$ $D_1 = +202.7 \text{ MHz}, \parallel [0, \bar{1}, 1]$ **D**-tensor: $D_2 = -30.6 \text{ MHz}, \perp [0, \bar{1}, 1]$ $D_3 = -172.1 \text{ MHz}, \perp [0, \bar{1}, 1]$ Diamond: natural type IIa, brown Model: native center 87L1, 87L2 Reference:

> Landolt-Börnstein New Series III/22 b

200

Landolt-Börnstein New Series III/22b

Fig. 6. Diamond. Atomic structure model for the W7 center [73L2].

Fig. 9. Diamond. Atomic structure model for the W25 center [81L].

Fig. 10. Diamond. Atomic structure model for the W26 center [81L].

Fig. 7. Diamond. Atomic structure model for the W21 center [82L2].

Fig. 8. Diamond. Atomic structure model for the W24 center [83W].

Fig.11. Diamond. Angular dependence of the effective g^2 -value of spectrum NL1 for rotation angle α_B of the magnetic field **B** in the (01)-plane [81A1].

Landolt-Börnstein New Series III/22b

Ammerlaan

203

4.1 Diamond (C)

[Ref. p. 205

Landolt-Börnstein New Series III/22b

	References for 4.1.3		
54G	Griffiths LHE Owen I Ward IM: Nature 173 (1954) 439		
55G	Griffiths I H E Owen J. Ward I M : Report of the Conference on Defects in Crystalline Solids		
550	London: Physical Society 1955 n 81		
5951	Smith WV Sorokin P.P., Gelles, I.L., Lasher, G.J.; Phys. Rev. 115 (1959) 1546.		
5952	Smith, W.V., Gelles, I.L., Sorokin, P.P.; Phys. Rev. Lett. 2 (1959) 39.		
61W	Walters, G.K., Estle, T.L.; J. Appl. Phys. 32 (1961) 1854.		
62F	Faulkner, E.A., Lomer, J.N.: Philos, Mag. 7 (1962) 1995.		
62H	Huggins, C.M., Cannon, P.: Nature 194 (1962) 829.		
63B	Baldwin ir., J.A.: Phys. Rev. Lett. 10 (1963) 220.		
63H	Harris, E.A., Owen, J., Windsor, C.: Bull. Am. Phys. Soc., Ser. II, 8 (1963) 252.		
65D	Dyer, H.B., Raal, F.A., du Preez, L., Loubser, J.H.N.: Philos. Mag. 11 (1965) 763.		
65L	Loubser, J.H.N., du Preez, L.: Br. J. Appl. Phys. 16 (1965) 457.		
66C	Cook R.J., Whiffen, D.H.: Proc. R. Soc. London Ser. A 295 (1966) 99.		
66L	Loubser, J.H.N., van Ryneveld, W.P.: Nature 211 (1966) 517.		
67B	Bell, M.D., Leivo, W.J.: J. Appl. Phys. 38 (1967) 337.		
67S1	Smith, M.J.A., Angel, B.R.: Philos. Mag. 15 (1967) 783.		
67S2	Samsonenko, N.D., Sobolev, E.V.: Pis'ma Zh. Eksp. Teor. Fiz. 5 (1967) 304; JETP Lett. (English		
	Transl.) 54 (1967) 250.		
68P	Podzyarei, G.A., Zaritskii, I.M.: Teor. Eksp. Khim. 4 (1968) 281; Theor. Exp. Chem. USSR (English		
(00	I ransi.) 4 (1968) 183.		
695	Sncherbakova, M.Ya., Sobolev, E.V., Samsonenko, N.D., Aksenov, V.K.: Fiz. Iveru. Teta Len-		
700	Ingrad II (1909) 1304; Sov. Phys. Sond State (English Hallst.) II (1909) 1104.		
108	Bratasnevskii, Yu.A., Lilvin, Yu.A., Samsonenko, N.D., Sobolev, E.V., 12v. Akad. Nauk SSSK		
701	Neorg. Mater. 0 (1970) 508.		
70K	Kiingsporn, P.E., Bell, W.D., Leivo, W.J., J. Appl. Phys. 41 (1770) 2777. Kim V.M. Watking G.D.: I. Appl. Dhys. 42 (1071) 722		
7101	Signification \mathbf{U}_{1} Solid State Commun. 0 (1071) 313		
7151	Szeharer, T., Sona State Commun. 9 (1971) 515. Sheherbakova M.Va. Soholeva F.V. Samsonenko N.D. Nadolinnyi V.A. Schastney P.V. Se-		
/152	menov, A.G.: Fiz. Tverd. Tela Leningrad 13 (1971) 341; Sov. Phys. Solid State (English Transl.) 13 (1971) 281.		
71S3	Samoilovich, M.I., Bezrukov, G.N., Butuzov, V.P.: Pis'ma Zh. Eksp. Teor. Fiz. 14 (1971) 551; JETP Lett. (English Transl.) 14 (1971) 379.		
71S4	Shul'man, L.A., Podzyarei, G.A., Nachal'naya, T.A.: Ukr. Fiz. Zh. 16 (1971) 371.		
72B	Bourgoin, J.C., Brosious, P.R., Kim, Y.M., Corbett, J.W., Chrenko, R.M.: Philos. Mag. 26 (1972)		
	1167.		
72S	Shcherbakova, M.Ya., Sobolev, E.V., Nadolinnyi, V.A.: Dokl. Akad. Nauk SSSR 204 (1972) 851; Sov. Phys. Dokl. (English Tranel.) 17 (1972) 513		
738	Kim V M Lee V H Brosious P Corbett I W · Radiation Damage and Defects in Semiconduc-		
/36	tors, London: Institute of Physics 1973, p. 202.		
73L1	Lomer, J.N., Wild, A.M.A.: Radiat. Eff. 17 (1973) 37.		
73L2	Loubser, J.H.N., Wright, A.C.J.: J. Phys. D 6 (1973) 1129.		
73L3	Loubser, J.H.N., Wright, A.C.J.: Diamond Research, Suppl. to Ind. Diamond Rev. 1973, p. 16.		
74B1	Brosious, P.R., Corbett, J.W., Bourgoin, J.C.: Phys. Status Solidi (a) 21 (1974) 677.		
74B2	Brosious, P.R., Lee, Y.H., Corbett, J.W., Cheng, L.J.: Phys. Status Solidi (a) 25 (1974) 541.		
74S	Strnisa, F.V., Corbett, J.W.: Cryst. Lattice Detects 5 (19/4) 261.		
75B	Bagdasaryan, V.S., Markosyan, E.A., Matosyan, M.A., Torosyan, O.S., Sharoyan, E.G.: Fiz. Iverd.		
	I ela Leningrad I/ (19/5) 1518; Sov. Phys. Solid State (English Transl.) I/ (19/5) 991.		
75K	Klyuev, Yu.A., Nepsha, V.I., Naletov, A.M.: Fiz. Iverd. Tela Leningrad 16 (1974) 3239; Sov. Phys. Solid State (English Transl.) 16 (1975) 2118.		
75L1	Loubser, J.H.N.: Cambridge, UK: Diamond Conference 1975, paper no. 5.		
75L2	Lomer, J.N., Welbourn, C.M.: Cambridge, UK : Diamond Conference 1975, paper no. 9.		
75M	Morhange, JF., Beserman, R., Bourgoin, J.C.: Jpn. J. Appl. Phys. 14 (1975) 544.		
75S	Shcherbakova, M.Ya., Sobolev, E.V., Nadolinnyi, V.A., Aksenov, V.K.: Dokl. Akad. Nauk SSSR		
	225 (1975) 566; Sov. Phys. Dokl. (English Transl.) 20 (1975) 725.		
77B	Brosious, P.R., Corbett, J.W., Bourgoin, J.C.: J. Phys. Paris 38 (1977) 459.		
77L1	Lomer, J.N., Welbourn, C.M.: Radiation Effects in Semiconductors 1976, Bristol: Institute of Physics		
	1977, p. 339.		
L			

Landolt-Börnstein New Series III/22b 205

References for 4.1.3

77L2	Loubser, J.H.N.: Solid State Commun. 22 (1977) 767.	
77L3	Loubser, J.H.N., van Wijk, J.A.: Diamond Research, Suppl. to Ind. Diamond Rev. 1977, p. 11.	
77 M	McNeil, D.A.C., Symons, M.C.R.: J. Phys. Chem. Solids 38 (1977) 397.	
78L1	Lee, Y.H., Brosious, P.R., Corbett, J.W.: Phys. Status Solidi (a) 50 (1978) 237.	
78L2	Loubser, J.H.N., van Wijk, J.A.: Rep. Prog. Phys. 41 (1978) 1201.	
78L3	Lomer, J.N., Welbourn, C.M.: Philos. Mag. A 37 (1978) 639.	
78L4	Loubser, J.H.N., van Wijk, J.A., Welbourn, C.M.: Oxford, UK : Diamond Conference 1978, p. 43.	
78N	Nadolinnyi, V.A., Shcherbakova, M.Ya., Sobolev, E.V.: Zh. Strukt. Khim. 19 (1978) 377; J. Struct.	
	Chem. USSR (English Transl.) 19 (1978) 327.	
78S	Shcherbakova, M.Ya., Nadolinnyi, V.A., Sobolev, E.V.: Zh. Strukt. Khim. 19 (1978) 305; J. Struct. Chem. USSR (English Transl.) 19 (1978) 261.	
78W	Welbourn, C.M.: Solid State Commun. 26 (1978) 255.	
79C	Clark, C.D., Mitchell, E.W.J., Parsons, B.J.: The Properties of Diamond, Field, J.E. (ed), London:	Í.
	Academic Press 1979, p. 23.	İ.
79L1	Loubser, J.H.N., van Wijk, J.A.: Cambridge, UK: Diamond Conference 1979, p. 23.	Ĺ
79L2	Lomer, J.N., Marriott, D.: Defects and Radiation Effects in Semiconductors 1978, Bristol: Institute of Physics 1979, p. 341.	
79T	Talmi, A., Beserman, R., Braunstein, G., Bernstein, T., Kalish, R.: Defects and Radiation Effects	
	in Semiconductors 1978, Bristol: Institute of Physics 1979, p. 347.	
80A	Ammerlaan, C.A.J., Burgemeister, E.A.: Ind. Diamond Rev. 40 (1980) 128.	
80B	Barklie, R.C., Guven, J., Henderson, B.: Bristol, UK: Diamond Conference 1980, p. 52.	
80W	van Wijk, J.A., Loubser, J.H.N.: Bristol, UK: Diamond Conference 1980, p. 90.	
81A1	Ammerlaan, C.A.J.: Defects and Radiation Effects in Semiconductors 1980, Bristol: Institute of	
	Physics 1981 , p. 81.	
81A2	Ammerlaan, C.A.J., Burgemeister, E.A.: Phys. Rev. Lett. 47 (1981) 954.	
81B	Barklie, R.C., Guven, J.: J. Phys. C 14 (1981) 3621.	
81L	Loubser, J.H.N., van Wijk, J.A.: Reading, UK: Diamond Conference 1981, p. 35.	
81W	van Wijk, J.A., Loubser, J.H.N.: Reading, UK: Diamond Conference 1981, p. 29.	
82F1	Flint, I.T., Lea-Wilson, M.A., Lomer, J.N.: Oxford, UK: Diamond Conference 1982, p. 141.	
82F2	Flint, I.T., Lomer, J.N.: Oxford, UK: Diamond Conference 1982, p. 142.	
82L1	Loubser, J.H.N.: Oxford, UK: Diamond Conference 1982, p. 135.	
82L2	Louiser, J.H.N., van Wijk, J.A., weldourn, C.M.: J. Phys. C 15 (1982) 6031.	İ.
82W1	van wijk, J.A., Louoser, J.H.N.: Oxford, UK: Diamond Conference 1962, p. 151.	
82W2	Van Wijk, J.A.: J. Phys. C 15 (1962) L961.	
03F1 02E2	Filli, I.I., Loillei, J.N., Filysica 1100 (1903) 103. Field, J.F., Diamond, Properties and Definitions, Cambridge, UK: Cavendish Laboratory 1083	
03F2 02T1	Field, J_{L_2} . Diamond, Fioperites and Definitions, Canonage, OK . Caveling Laboratory 1965.	
03L1 03L2	Louiser, J.H.N., Vali Wijk, J.A.: Cambridge, UK: Diamond Conference 1983 , p. 136.	
03L2	van Wijk IA Loubser IHN: L Dhvs. C 16 (1983) 1501	
0.5 W 9.4T 1	Lee Wilson M.A. Lower, I.N.: Bristol IIK: Diamond Conference 1984 , p. 61	
84L1	Lea-Wilson, M.A., Lomer, J.N., Bristol, UK, Diamond Conference 1984 , paper P8	
04L2 9/I 3	Lea Wilson, M.A., Lomer, J.N.: Bristol, UK: Diamond Conference 1984 , paper P9	
84W	van Wijk IA Loubser IHN Bristol UK Diamond Conference 1984, n 60	
854	Ammeriaan C A L van Kemp R \cdot L Phys C 18 (1985) 2623	
85L1	Lea-Wilson M.A. Lomer, J.N.: Reading, UK: Diamond Conference 1985, paper P5.	
85L2	Loubser, J.H.N., van Wijk, J.A.: Mater, Res. Soc. Symp. Proc. 46 (1985) 587.	Ĺ
86L	Lea-Wilson, M.A., Lomer, I.N.: Royal Holloway, UK: Diamond Conference 1986, p. 147.	
86W	van Wijk, J.A., Loubser, J.H.N.: Mater. Sci. Forum 10–12 (1986) 923.	
87L1	Loubser, J.H.N., van Wijk, J.A.: Oxford, UK: Diamond Conference 1987, paper P11.	l
87L2	Loubser, J.H.N., van Wijk, J.A.: S. Afr. J. Phys. (S. Africa) 10 (1987) 165.	
87W	van Wijk, J.A., Woods, G.S.: Oxford, UK: Diamond Conference 1987, paper 10.	
88B	Baker, J.M., Loubser, J.H.N., Newton, M.E.: Cambridge, UK: Diamond Conference 1988.	
88L1	Lea-Wilson, M.A.: Ph. D. Thesis, Reading, UK: Reading University 1988.	
88L2	Loubser, J.H.N.: private communication 1988.	

206

Landolt-Börnstein New Series III/22b